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Abstract
I report on the status, at the end of FY12, of the studies of an arc cell for a hybrid synchrotron accelerating from 375 GeV/c to
750 GeV/c in momentum. Garren produced a complete lattice that gives a good outline of the structure of a hybrid synchrotron
lattice. It is, however, lacking in some details: it does not maintain a constant time of flight, it lacks chromaticity correction, its cell
structure is not ideal for removing aberrations from chromaticity correction, and it probably needs more space between magnets. I
have begun studying cell structures for the arc cells to optimize the lattice performance and cost. I present some preliminary results
for two magnets per half cell. I then discuss difficulties encountered, some preliminary attempts at resolving them, and the future
plans for this work.

1. Introduction
A hybrid synchrotron is a concept of Don Summers that uses

interleaved superconducting and ramped dipoles to achieve a
high average bending field simultaneously with rapid acceler-
ation. This allows the efficient acceleration of muons to high
energy. A more complete introduction with references is avail-
able in [1].

In [1] and [2], Garren and I present a first-pass design that
uses 8 superperiods, each with 6 arc cells, 3 cell straights, and
dispersion suppressors that eliminate both dispersion and closed
orbit motion with energy in the straights. The dispersion sup-
pressors maintain a high average bend field, similar to that in
the arcs. I will refer to this as the Garren design.

The Garren design gives a good picture of what the structure
of the machine should be. The dispersion suppressors maintain-
ing a high average bend field is a particular advantage. However,
there are still some issues to be addressed in this lattice:

• The time of flight of the reference orbit must be indepen-
dent of the reference momentum (this does not mean that
the frequency slip factor is zero).

• Ideally the arcs should have an integer tune so that iden-
tical sextupoles can be used at all points in the arc to pro-
vide chromaticity correction while eliminating nonlinear
aberrations at low orders. While this is not strictly neces-
sary, it will probably work better than other solutions.

• The existing drift lengths are probably too short. Values
in the range of 0.5 m [3] to to 2.0 m [4] have been sug-
gested to me; I will optimistically take the lower value.
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• 6 superperiods are likely to be sufficient.

• The lattice needs a tuning mechanism, which will likely
be in the straight.

• We would like to reduce the required aperture, which in
the Garren design is coming about equally from disper-
sion side and orbit motion.

• The existing dipole structure within an arc cell is some-
what arbitrary; it should be optimized.

2. Arc Cell Optimization

The goal of the initial study is to look at different configu-
rations of warm and cold dipoles in an arc cell to determine the
optimum configuration. The arc cells will have time of flight and
tune independent of momentum. The quadrupoles will be split
in half with some drift space allocated for sextupoles, but no
sextupoles will be used in the initial study. I will need to revisit
the study when sextupoles are included since there will probably
be closed orbit motion with momentum in the sextupoles.

For this study I make the following assumptions:

• The lattice cell is FODO.

– The dipoles are split in half, with two inter-magnet
drifts between them. Eventually a sextupole will go
in this space (I will later add a third drift worth of
placeholder for the sextupole).

– Reflection symmetry about either quadrupole will
be maintained.

• Superconducting dipoles have a 8.0 T field.

• Warm dipoles have a maximum field of 1.8 T.

• Quadrupoles have a maximum field of 1.5 T, and the ratio
of the pole tip radius to the maximum beam radius is 1.3.
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• There are 8 superperiods (later I will modify this to 6).

• The arc in each superperiod will have an integer tune to
facilitate correction of low-order nonlinear terms from the
chromaticity correction sextupoles.

• There is 75 cm of space between magnets (later I will
modify this to 50 cm).

• The normalized beam emittance is 25 µm, and the energy
spread is 750 MeV.

An initial guess for dipole lengths can be obtained based on
the minimum and maximum momenta and desired bend angles
per cell:

𝐿𝑊 = 𝜃
2𝐵𝑊 𝑐 ෷

𝑝+𝑐
𝑒 − 𝑝−𝑐

𝑒 ෸ (1)

𝐿𝐶 = 𝜃
2𝐵𝐶 𝑐 ෷

𝑝+𝑐
𝑒 + 𝑝−𝑐

𝑒 ෸ (2)

where 𝐿𝑊 is the total length of warm dipole in the cell, 𝐿𝐶 is
the total length of cold dipole in the cell, 𝐵𝑊 is the warm dipole
field, 𝐵𝐶 is the cold dipole field, 𝑝− is the minimum momen-
tum, and 𝑝+ is the maximum momentum. These lengths will be
treated as a parameter for optimization.

The tunes are chosen to be 𝑘𝑥/𝑁 and 𝑘𝑦/𝑁 in the horizontal
and vertical planes, respectively, where 0 < 𝑘𝛼 < 𝑁/2, and 𝑁
is the number of cells per superperiod.

2.1. Two Dipoles per Half Cell
The configuration of two dipoles per half arc cell is not

meant to represent a desired configuration; it is merely the first
step in studying the properties of the hybrid arc cell lattices. We
will learn important properties of the arc cell from these stud-
ies, but the values (apertures and circumferences) will be signif-
icantly larger than they would be in a real machine.

There are two possible arrangements: the cold dipole can
be near either the F or D quadrupole. In optimizing this lattice,
find closed orbits at 375 GeV/c and 750 GeV/c with the warm
dipoles at +1.8 T and −1.8 T, respectively. The following pa-
rameters are varied:

• The quadrupole fields at the maximum andminimummo-
mentum

• The quadrupole lengths

• The warm and cold dipole lengths

These are adjusted to meet the following criteria:

• At both momenta, the tunes are the desired values.

• The maximum field seen by the beam (including closed
orbit motion, dispersion size, and emittance size) is set
equal to (1.5/1.3) T.

• The time of flight at the two momenta is the same.
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Figure 1: Maximum horizontal displacement in an arc cell as a function of ring
circumference.

• Make the sum over the two quadrupoles of the ratio of
the average of theminimum andmaximum beam horizon-
tal position to the difference between the maximum and
minimum positions. This is equivalent to 𝑥𝐹,min𝑥𝐷,min =
𝑥𝐹,max𝑥𝐷,max. This is an attempt tominimize the beam ex-
cursion while taking into account the significantly larger
beam excursion in the F quadrupole. The positions take
into account the closed orbit position, the dispersion size,
and the emittance size.

The results of the optimizations are shown in Figs. 1–3.
Figure 1 is the key plot: it demonstrates that having the warm
dipole adjacent to the focusing quadrupole gives the small-
est horizontal aperture for a given circumference. The beam
tends to move less in the fixed field dipole and more in the
warm dipole, and so when the warm dipole is near the focusing
quadrupole, the focusing quadrupole works with the warmmag-
net to bend the beam back in at higher energies, whereas when
it is near the defocusing quadrupole, the defocusing quadrupole
is working against the beam motion. [!t]

Figure 2 shows that even shorter circumferences can be
achieved with fewer arc cells per superperiod. However, Fig. 3
shows that in this case, the horizontal aperture will be much
larger (in fact, it is off scale both in this graph and in Fig. 1).
While the runs were not yet extended out to more arc cells per
superperiod, it seems likely that while lower apertures could be
achieved, this would be at the cost of increased circumference.
While the quadrupoles would shorten as the aperture decreased,
the increase in the number of drifts causes the circumference to
increase.

Figure 3 also demonstrates that for a given number of cells,
having the warm magnet near the D will give a lower maximum
displacement; this is because the motion in the warm magnet
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Figure 2: Ring circumference, ignoring straights and matching sections, for two
dipoles per half cell as a function of the number of cells per superperiod. Mul-
tiple points for each value a given number of cells are for different horizontal
and vertical tunes.

opposing the bend direction in the defocusing quadrupole tends
to reduce the overall displacements, but at the cost of longer
quadrupoles. The circumference is thus increased, and thus as
shown in Fig. 1, the results displacement for a given circum-
ference is better when the warm magnet is near the focusing
quadrupole.

Figures 4–7 show the dependence of the circumference and
horizontal aperture on the tune. The circumference prefers a low
vertical tune and a horizontal tune somewhat below 0.25. This
is because reducing vertical focusing reduces the required inte-
grated quadrupole strengths while having no significant impact
on the horizontal motion (note that the beam size is dominated
by the dispersion size [2], so vertical aperture is not a signifi-
cant problem, though maybe this should be revisited when very
small vertical tunes are considered). For horizontal aperture, de-
pendence on vertical tune is weak (as expected), but the optimal
horizontal tune depends on which configuration is under con-
sideration. For the warm magnet near the focusing quadrupole,
a high horizontal tune is preferred (conflicting with the desired
tune for reducing the circumference), while for the warm mag-
net near the focusing quadrupole, a horizontal tune near 0.25
is preferred (similar to the requirement for reducing circumfer-
ence).

I expect that these results will continue to hold up for an even
number of dipoles per half cell: namely that the dipole nearest
the focusing quadrupole should be warm, and that a low verti-
cal tune and a horizontal tune at or just below 0.25 is preferred.
We expect significantly reduced horizontal displacements and
somewhat reduced circumferences with more dipoles per half
cell, up to a the point where the increased number of inter-
magnet drifts begins to increase the arc cell lengths to the point
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Figure 3: Maximum horizontal displacement (includes closed orbit motion, dis-
persion size, and emittance size) in an arc cell as a function of the number of
cells per superperiod.
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Figure 4: Circumference as a function of tune, for 12 arc cells per superperiod.
Warm dipole is near the defocusing quadrupole.

where the benefits to circumference and horizontal aperture no
longer appear.

A question still to be addressed is the preferred configuration
with an odd number of dipoles per half cell (as in the Garren lat-
tice). Garren demonstrated a configuration with no closed orbit
motion in the quadrupoles, thus giving relatively small aperture
quadrupoles. When including time of flight correction, we will
need to determine whether it is more optimal to use motion in
the quadrupoles to help with that correction (thus having warm
magnets near the quadrupole), or whether is better to just use
steering with the dipoles to accomplish this (this having cold
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Figure 5: Maximum horizontal displacement as a function of tune, for 12 arc
cells per superperiod. Warm dipole is near the defocusing quadrupole.
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Figure 6: Circumference as a function of tune, for 12 arc cells per superperiod.
Warm dipole is near the focusing quadrupole.

magnets near the quadrupoles).

2.2. Challenges and Future Steps
The biggest challenge in this study has been the automated

finding of solutions for a given configuration. It appears that
a solution always exists. However, analytic estimates based
on a thin lens FODO lattice tend to be far off due to the split
quadrupoles, the relatively long quadrupoles, and the relatively
long drifts between them. Displacements and angles can then
easily get large, and particles begin to go backwards when exact
solutions are used.

I am addressing this in two parts: first, I am first finding
a solution using paraxial approximations for everything, which
has the advantage both of being fast and avoiding the issue of
particles turning around. I will then start with that solution and
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Figure 7: Maximum horizontal displacement as a function of tune, for 12 arc
cells per superperiod. Warm dipole is near the focusing quadrupole.

improve it by using analytic solutions for the magnets, with ex-
act solutions for dipoles and drifts but paraxial approximations
for quadrupoles. These solutions can also be evaluated rapidly,
and the improved initial guess should avoid issues of particles
going backward. This solution will then be refined with exact
tracking, which should converge quickly since we will be very
close to the correct solution. I am augmenting this with an more
robust closed orbit finder (see the appendix) which should find
closed orbits as long as the initial guess does not result in a par-
ticle going backward.

Once I have a more robust optimizer working, my plans are
1. Find solutions for increasing numbers of dipoles per half

cell with varying arrangements, until addingmore dipoles
is clearly undesirable.

2. Add chromatic correction to the preferred solution. Ver-
ify that this does not change the preferred number of
dipoles and their arrangement.

3. Add dispersion suppression and straights. Adjust the time
of flight correction scheme to take these additional sec-
tions into account. Again, verify that this does not change
the preferred number of dipoles.

4. Verify sufficient dynamic aperture through tracking.

Appendix A. Robust Closed Orbit Finder

Begin by defining a function 𝑓 (𝑧) which returns the phase
space variables after one turn if they had the initial values of 𝑧.
The closed orbit is the solution to the equation 𝑓 (𝑧) = 𝑧. I solve
this equation using a modified version of Newton's method:

𝑧𝑛+1 = 𝑧𝑛 + 𝛼[𝐼 − ∇𝑓 (𝑧𝑛)]−1[𝑓 (𝑧𝑛) − 𝑧𝑛] (A.1)

Initially 𝛼 = 1. But if the evaluation of 𝑓 (𝑧𝑛+1) fails (because
the particle goes backward), I reduce 𝛼 by a factor of 2 until it
succeeds. As long as the initial evaluation 𝑓 (𝑧0) succeeds, this
method seems to be very robust for finding a solution.
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Most closed orbit finders require that a vector be multiplied
by (𝐼 − 𝑀)−1, where 𝑀 is a symplectic matrix. This can be
computed explicitly withmuch less work than onewould expect.
A 2𝑛 × 2𝑛 symplectic matrix 𝑀 has a characteristic polynomial
of the form [5]

2𝑛

𝑘=0
𝑐𝑛𝑘𝑀𝑘 = 0 (A.2)

with 𝑐𝑛,2𝑛−𝑘 = 𝑐𝑛𝑘, and 𝑐𝑛0 = 𝑐𝑛,2𝑛 = 1. The first three coeffi-
cients (the only ones we need) can be expressed as [6]

𝑐𝑛1 = − ්
1≤𝑖≤𝑛

𝑀𝑖𝑖 (A.3)

𝑐𝑛2 = ්
1≤𝑖<𝑗≤𝑛 ุ

𝑀𝑖𝑖 𝑀𝑖𝑗
𝑀𝑗𝑖 𝑀𝑗𝑗ุ (A.4)

𝑐𝑛3 = − ්
1≤𝑖<𝑗<𝑘≤𝑛

|
|
||

𝑀𝑖𝑖 𝑀𝑖𝑗 𝑀𝑖𝑘
𝑀𝑗𝑖 𝑀𝑗𝑗 𝑀𝑗𝑘
𝑀𝑘𝑖 𝑀𝑘𝑗 𝑀𝑘𝑘

|
|
||

(A.5)

Next, compute the inverse of 𝐼 − 𝑀 . To do this, we first
write the inverse in the form

(𝐼 − 𝑀)−1 = 1
2 ๙

𝐼 +
𝑛

𝑘=1
𝜆𝑛𝑘(𝑀𝑘 − 𝑀−𝑘)

๚
(A.6)

The inverse of powers of a symplectic matrix are trivial to com-
pute from the corresponding power:

(𝑀−𝑘)𝑖𝑗 = 𝐽𝑖𝜎(𝑖)𝐽𝑗𝜎(𝑗)(𝑀𝑘)𝜎(𝑗)𝜎(𝑖) (A.7)
𝜎(𝑖) = (2, 1, 4, 3, 6, 5) (A.8)

𝐽𝑖𝜎(𝑖) = (+1, −1, +1, −1, +1, −1) (A.9)
We then multiply this by 𝐼 − 𝑀 , use the characteristic polyno-
mial to eliminate higher powers of 𝑀 , then zero the coefficients
of the remaining nonzero powers of 𝑀 . The results are

𝜆𝑛𝑘 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

2 + 2
𝑛−𝑘−1

∑
𝑗=1

𝑐𝑛𝑗 + 𝑐𝑛,𝑛−𝑘

2 + 2
𝑛−1
∑
𝑗=1

𝑐𝑛𝑗 + 𝑐𝑛𝑛

𝑘 < 𝑛

1

2 + 2
𝑛−1
∑
𝑗=1

𝑐𝑛𝑗 + 𝑐𝑛𝑛

𝑘 = 𝑛

(A.10)

When the orbit is known to be in themidplane (as it is for our
problem), one should only compute the elements in the horizon-
tal plane, to avoid singularities arising from the vertical plane
potentially causing difficulties with the matrix inversion.
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